The Discrete Fourier Transform, Part 6: Cross-Correlation

نویسنده

  • Douglas Lyon
چکیده

This paper is part 6 in a series of papers about the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is on correlation. The correlation is performed in the time domain (slow correlation) and in the frequency domain using a Short-Time Fourier Transform (STFT). When the Fourier transform is an FFT, the correlation is said to be a " fast " correlation. The approach requires that each time segment be transformed into the frequency domain after it is windowed. Overlapping windows temporally isolate the signal by amplitude modulation with an apodizing function. The selection of overlap parameters is done on an ad-hoc basis, as is the apodizing function selection. This report is a part of project Fenestratus, from the skunk-works of DocJava, Inc. Fenestratus comes from the Latin and means, " to furnish with windows " .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of the magnitude terms of orthogonal scaling functions

The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processi...

متن کامل

Robust Digital Watermarking Scheme using Contourlet Transform

A novel oblivious and highly robust watermarking scheme using Multiple Descriptions (MD) and Quantization Index Modulation (QIM) of the host image is presented in this paper. The watermark is embedded in the Discrete Contourlet Transform domain (CT). Discrete Countourlet Transform (CT) is able to capture the directional edges and contours superior to Discrete Wavelet Transform (DWT). Watermark ...

متن کامل

Optimization of Generalized Discrete Fourier Transform for CDMA

Generalized Discrete Fourier Transform (GDFT) with non-linear phase is a complex valued, constant modulus orthogonal function set. GDFT can be effectively used in several engineering applications, including discrete multi-tone (DMT), orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA) communication systems. The constant modulus transforms like discrete Fou...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

Simulation of GDFT for CDMA

Generalized Discrete Fourier Transform (GDFT) with nonlinear phase is a complex valued, constant modulus orthogonal function set. GDFT can be effectively used discrete multi-tone (DMT), orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA) communication systems. The constant modulus transforms like discrete Fourier transform (DFT), Walsh transform, and Gold ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Object Technology

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010